Step of Proof: fun_with_inv_is_bij
12,41
postcript
pdf
Inference at
*
1
1
1
1
I
of proof for Lemma
fun
with
inv
is
bij
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
g
:
B
A
5. (
g
o
f
) = Id{
A
}
6. (
f
o
g
) = Id{
B
}
7.
a1
:
A
8.
a2
:
A
9.
f
(
a1
) =
f
(
a2
)
10.
g
(
f
(
a1
)) =
g
(
f
(
a2
))
a1
=
a2
latex
by ((((NotThinning (With
a1
(EqHD 5)))
CollapseTHENM (With
a2
(EqHD 5)))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
5. (
f
o
g
) = Id{
B
}
C1:
6.
a1
:
A
C1:
7.
a2
:
A
C1:
8.
f
(
a1
) =
f
(
a2
)
C1:
9.
g
(
f
(
a1
)) =
g
(
f
(
a2
))
C1:
10. (
g
o
f
)(
a1
) = Id{
A
}(
a1
)
C1:
11. (
g
o
f
)(
a2
) = Id{
A
}(
a2
)
C1:
a1
=
a2
C
.
Definitions
s
=
t
origin